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Abstract Recent changes in diagnostic criteria for Alz-
heimer’s disease (AD) state that biomarkers can enhance cer-
tainty in a diagnosis of AD. In the present study, we combined
cognitive function and brain morphology, a potential imaging
biomarker, to predict conversion from mild cognitive impair-
ment to AD. We identified four biomarkers, or cortical signa-
tures of cognition (CSC), from regressions of cortical thickness
on neuropsychological factors representing memory, executive
function/processing speed, language, and visuospatial function

among participants in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). Neuropsychological factor scores were cre-
ated from a previously validated multidimensional factor struc-
ture of the neuropsychological battery in ADNI. Mean
thickness of each CSC at the baseline study visit was used to
evaluate risk of conversion to clinical AD among participants
withmild cognitive impairment (MCI) and rate of decline on the
Clinical Dementia Rating Scale Sumof Boxes (CDR-SB) score.
Of 307MCI participants, 119 converted to AD. For all domain-
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specific CSC, a one standard deviation thinner cortical thickness
was associated with an approximately 50 % higher hazard of
conversion and an increase of approximately 0.30 points annu-
ally on the CDR-SB. In combined models with a domain-
specific CSC and neuropsychological factor score, both CSC
and factor scores predicted conversion to AD and increasing
clinical severity. The present study indicated that factor scores
and CSCs for memory and language both significantly pre-
dicted risk of conversion to AD and accelerated deterioration
in dementia severity. We conclude that predictive models are
best when they utilize both neuropsychological measures and
imaging biomarkers.

Keywords MRI . Freesurfer . Cortical thickness . ADNI .

Cognition . Brain mapping

Introduction

Alzheimer’s disease (AD) is a progressive, devastating, and
ultimately fatal neurodegenerative disorder of older age that
leads to loss of memory and the ability to function independent-
ly (Blennow et al. 2006; Mayeux and Sano 1999). Advances
have been made over the past several decades in understanding
the pathological cascade of deterioration in AD (Jack et al.
2010). However, the field continues to struggle with how to
identify individuals at the highest risk of developing signs and
symptoms of clinical AD. The pathological cascade of AD
likely begins 20 to 30 years before clinical onset when an
individual is still cognitively normal (Weiner et al. 2012). Thus,
early detection of AD pathology using biomarkers is of practical
and clinical relevance (Clark et al. 2008; Shaw 2008). Correctly

distinguishing AD pathology from other neurodegenerative dis-
orders of late life using biomarkers in the preclinical stage of AD
would enhance clinical trials for early detection and treatment.

Structural imaging, which facilitates estimation of cortical
thickness across the entire cortical surface, is becoming in-
creasingly used in dementia evaluation to assist with differen-
tial diagnosis (Hill 2010). Magnetic resonance imaging (MRI)
is helpful for excluding other brain conditions that cause
cognitive decline, such as brain tumors and hydrocephalus.
This shift in clinical practice makes cortical thickness estima-
tion a potentially appealing, feasible biomarker. Structural
MRI measures can potentially uncover subtle changes that
predict progression to clinical AD (Dickerson et al. 2011).
Cortical thickness has been demonstrated to be sensitive to
early pathological changes in AD progression. Fennema-
Notestine et al. (2009) reported a pattern of greater levels of
cortical atrophy from cognitively normal older adults to
single-domain MCI patients, multiple-domain MCI patients,
and patients with AD. Other studies report similar patterns but
have focused on particular brain regions such as the mesial
temporal lobe (Karow et al. 2010; McDonald et al. 2009;
McEvoy et al. 2009). In a recent study of neuropsychological
and MRI characteristics, patients with prodromal AD were
identified using new criteria proposed to identify patients early
in the disease course. Relative to healthy older adults, patients
with prodromal AD presented with greater gray matter atro-
phy in the medial temporal lobe, which was correlated with
lower episodic memory function (Rami et al. 2012). This
region is associated with pathological changes early in the
course of AD, and the finding underscores the potential utility
of establishing an imaging signature of AD.

Previous research has suggested an early link between
cortical atrophy in disease-specific brain regions and progres-
sion from mild cognitive impairment to AD (Fox et al. 1996,
2001; Schott et al. 2003). The magnitude of cortical thinning
in brain regions affected by AD pathology, called a cortical
signature of AD, has been shown to predict prodromal AD
(Bakkour et al. 2009; Dickerson et al. 2009, 2011). Although
research suggests the biology of AD involves a stereotypical
pattern of cortical atrophy that begins in medial temporal lobe
structures, leading to memory impairment, additional brain
regions are affected as the disease progresses, causing deficits
in other cognitive functions such as visuospatial function and
language. In addition to memory, declines in executive function
may take place relatively early in the disease process (Carlson et
al. 2008; Johnson et al. 2012), underscoring the importance of
multi-domain cognitive assessment to characterize early changes
attributable to AD pathology. Thus, assessing the cortical sig-
natures of particular cognitive domains may reveal cortical
regions that predict dementia onset and functional progression.

In 2011, the National Institute on Aging Alzheimer’s
Association workgroup released revised criteria for the di-
agnosis of AD (McKhann et al. 2011), which called for
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research on using biomarkers in future diagnostic criteria.
McKhann and colleagues concluded that advancements in
biomarkers could enhance the pathophysiological specifici-
ty of the diagnosis. Amyloid imaging has been suggested as
a feasible biomarker, and is currently under FDA review for
identifying people with significant amyloid deposition be-
cause it may help identify cognitively normal prodromal
individuals who may not yet have clinical AD (Sperling et
al. 2011). However, evidence of amyloid deposition does
not capture everyone at risk, as many older adults with mild
cognitive impairment do not have measureable amyloid
levels (Villemagne and Rowe 2011). It is also currently
unclear whether individuals with mild cognitive impairment
without significant amyloid will accumulate significant am-
yloid and then convert to AD or another dementia.

Previous research using imaging markers have focused
either on a priori selected regions (e.g., Fox et al. 2001;
Good et al. 2002; Jack et al. 1999; Smith et al. 2007;
Thompson et al. 2001), regions with differences between
healthy controls and patients with AD (e.g., Davatzikos et
al. 2011; Dickerson et al. 2009, 2011), or many regions used
in machine learning algorithms with or without feature
selection (e.g., Hinrichs et al. 2009, 2011; Misra et al.
2009; Shen et al. 2010). This previous work has established
a critical knowledge base and highlights the importance of
considering systems of brain regions in the disease process
(Ahn et al. 2011; Seeley et al. 2009). Thus, in the present
study we aimed to define core brain regions associated with
cognitive factors (memory, executive function/processing
speed, language, visuospatial function, attention) previously
derived from the neuropsychological battery used in ADNI
(Park et al. 2012).

The present study investigated whether cortical thinning
associated with specific cognitive functions (i.e., cortical
signatures of cognition) predicts clinical conversion to AD
in older adults with amnestic MCI, and whether the predictive
value is independent of a general pattern of cortical thinning
that has previously been identified as the cortical signature of
AD (Dickerson et al. 2009). Domain-specific factor scores of
cognitive function, constructed from a previously established
battery of neuropsychological tests (Park et al. 2012), were
correlated with regional cortical thickness. It was hypothe-
sized that domain-specific cortical signatures of cognition
(CSC), particularly for memory, are associated with time to
conversion to AD and worsening function.

Methods

Participants

Data were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database. ADNI was launched in

2004 by the National Institute on Aging, the National Insti-
tute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical compa-
nies, and non-profit organizations as a $60 million, five-
year public-private partnership (Mueller et al. 2005). The
primary goal of ADNI was to test whether serial MRI,
positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cogni-
tive impairment and early AD. Data, which are continuously
updated and freely available to subscribers, were down-
loaded on March 15, 2011.

Inclusion and diagnostic criteria

ADNI includes participants between 55 and 90 years of age
who had a study partner able to provide an independent
evaluation of functioning and who spoke either English or
Spanish. Participants were primarily recruited from Alz-
heimer’s Disease Research centers. Participants were wil-
ling and able to undergo test procedures, including
neuroimaging, and agreed to longitudinal follow up. Partic-
ipants taking certain psychoactive medications were exclud-
ed. Healthy control participants had a Mini-Mental State
Examination (Folstein et al. 1975) score above 23, clinical
dementia rating (CDR) of 0 (Morris 1993), and no depres-
sion as measured by the Geriatric Depression Scale (Brink et
al. 1982). MCI participants had an MMSE score above 23,
CDR of 0.5, and presented with a memory complaint and
objective memory impairment measured by the Wechsler
Memory Scale Logical Memory Test II (Wechsler 1987).
MCI participants had preserved activities of daily living and
an absence of dementia. Participants with AD at baseline
had an MMSE score between 20 and 26, CDR of 0.5 or 1.0,
and met National Institute of Neurological and Communi-
cative Diseases and Stroke/Alzheimer’s Disease and Related
Disorders Association guidelines (NINCDS/ADRDA) for
probable AD (McKhann et al. 1984).

The present study used baseline neuropsychological test
performance data and cortical thickness measurements from
119 with MCI who later converted to AD with in 48 months
of the baseline visit (MCI-converters) to identify CSC.
Baseline and 6, 12, 18, 24, 36, and 48-month follow up data
were then used in 307 MCI (of 397) participants to predict
conversion to AD and the rate of change in dementia sever-
ity. Participants with MCI who later converted to AD were
also compared to 169 healthy controls (of 229) to create a
cortical signature of AD (Dickerson et al. 2009). Partici-
pants were excluded from this study if any of their regional
mean cortical thickness measures were greater than 3 stan-
dard deviations from their diagnostic group mean after con-
trolling for age, sex, and education. This criterion was
chosen to provide an automated method of quality control
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rather than manual inspection and editing of the surfaces,
which is time-consuming and prone to bias.

Magnetic resonance imaging (MRI)

MRI data were downloaded from the ADNI website. The
description of MRI data acquisition of the ADNI study can be
found at http://www.adni-info.org/Scientists/MRIProtocol-
s.aspx. Briefly, high-resolution sagittal 3-dimensional T1-
weighted Magnetization Prepared RApid Gradient Echo (MP-
RAGE) scans using custom designed sequences with voxel
sizes of 1.1×1.1×1.2 mm were collected on 1.5 T scanners.
MPRAGE sequences were optimized for each scanner to max-
imize compatibility across scanners. Scanners at each site were
calibrated for ADNI with ongoing quality assurance examina-
tions using a specially designed ADNI phantom and human
volunteers; these scans were quality-checked by investigators at
the Mayo site (Kruggel et al. 2010; Weiner et al. 2012).

Cortical thickness estimation

We applied the FreeSurfer pipeline (version 5.1; Dale et al.
1999; Prabhakaran et al. 2012) to the downloadedMR images
to produce cortical thickness measurements for each subject in
the ADNI dataset. The T1-weighted MR image was first
transformed to the Talairach atlas (Talairach and Tournoux
1988). Next, the main body of white matter was identified by
atlas location, intensity, and local neighbors. The variation in
intensity across white matter was used to correct bias in the
image. The image was then skull stripped, leaving only the
brain. The remaining voxels were classified as white matter or
non-white matter based on intensity and neighbor constraints.
For each hemisphere, an initial surface was created along the
edge of white matter and refined to follow the white matter/
gray matter intensity gradient. This surface was then pushed
outward until the intensity gradient between gray matter and
cerebrospinal fluid was reached (the pial surface) (Dale et al.
1999; Fischl and Dale 2000). Next, the sulcal and gyral pattern
was aligned to the Freesurfer average surface (Fischl et al.
1999a, b). The surface was resampled into a common refer-
ence space, with the same number of nodes, or points, on the
surface to analyze the results across participants vertex-by-
vertex or regionally. Finally, the thickness values were
smoothed with a 10 mm full-width at half maximumGaussian
filter. These methods of determining cortical thickness from
MRI scans have been demonstrated to be highly reliable in
previous studies of older adults (Dickerson et al. 2008).

Factor scores of cognitive domains

Domain-specific factor scores were created from a previously
established factor analysis of the ADNI neuropsychological
battery representing memory, executive function/processing

speed, visuospatial function, language, and attention (Park et
al. 2012). Scores were generated from a confirmatory factor
analysis of the following tests administered at the baseline
ADNI visit, which allowed the following indicators to have
different factor loadings, or weights, on the underlying con-
structs. Details about administration and scoring of each test
are available from the ADNI protocol and elsewhere (Mueller
et al. 2005). In consultation with empirical data distributions
of each indicator, a consensus panel of neuropsychologists
agreed on the factor structure. Memory was represented by the
learning (Trial5—Trial1), long delay recall, recognition, and
short delay recall calculated from the Auditory Verbal Learn-
ing Test (AVLT; Rey 1964) and delayed recall and recognition
measures from the ADAS-Cog (Rosen et al. 1984). Visuospa-
tial function was represented by clock-drawing, clock-copy
(Goodglass and Kaplan 1983), and ADAS-Cog construction
praxis scores. Language was represented by semantic fluency
from the Verbal Fluency Test (Morris et al. 1989), spontane-
ous recall from the Boston Naming Test (Williams et al.
1989), and ADAS-Cog Naming. A factor representing exec-
utive function and processing speed was composed of the
Trail-Making Test (A and B-A) (Reitan 1958), ADAS-Cog
number cancellation, and the digit symbol substitution test
(Lezak et al. 2004;Wechsler 1987). Attention was represented
by the Digit Span Forward and Backward performance scores
(Wechsler 1987). As demonstrated by Park et al. (2012), the
factors identified above are invariant across levels of clinical
dementia severity.

Clinical Dementia Rating Scale—Sum of Boxes (CDR-SB)

The CDR is a semi-structured interview designed to assess
global dementia severity using six categories of cognitive
and daily functioning (memory, orientation, judgment and
problem solving, community affairs, home and hobbies, and
personal care) (Morris 1993). It is useful for staging and
tracking decline in AD. Domains in the CDR are rated on an
ordinal scale (00no impairment, 0.50questionable impair-
ment, 10mild impairment, 20moderate impairment,
30severe impairment), which are summed to create a global
estimate of dementia severity (theoretical range00–18).

Analysis plan

Descriptive statistics were used to characterize the study
sample. We used neuropsychological test scores from
MCI-converters to identify CSC at the baseline ADNI study
visit, which were then used as predictors in survival analy-
ses to predict conversion from MCI to clinical AD and in
growth models predicting decline in CDR-SB.

Cortical signatures We identified cortical signatures in the
MCI-converter group at baseline and then applied them to
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cognitively normal healthy control and MCI groups. For
each cognitive domain (memory, executive function/pro-
cessing speed, language, visuospatial function, attention),
multiple regression analyses with covariates for age, sex,
and education were performed to evaluate the relationship
between cortical thickness and cognitive factor scores across
MCI-converter participants. Corresponding cortical thick-
ness regions in all participants with MCI were then used to
predict conversion from MCI to AD and functional decline.
Five CSCs were identified as the nodes that had a significant
(p<0.005) relationship between thickness and a factor score
(Fig. 1). We excluded the attention CSC from further anal-
yses because it overlapped considerably with other cortical
signatures (Table S2). The mean thickness for each CSC
was standardized to z-scores in the present study using the
mean and standard deviation (e.g. unit variance) in the
ADNI healthy control group to ensure that each signature
had a comparable variance. The standardized scores were
then used to predict conversion from MCI to AD and func-
tional decline.

To compare our CSCs to the previously identified cortical
signature of AD (Dickerson et al. 2009), a two-sample t-test
with covariates for age, sex, and education was used to
identify a cortical signature of AD by comparing cortical
thickness values in cognitively normal controls versus AD.

The cortical signature of AD was created using a threshold
at P<1*10−14 to make it similar in size to the CSCs. A
control region unassociated with any factor scores was
created with cortical thickness measures from the calcarine
region, which has been used as a control region in previous
research (Dickerson et al. 2009).

MCI to AD conversion To accommodate varying times to
AD conversion and censoring, we used semi-parametric Cox
proportional hazards models to predict conversion to AD
within 4 years of follow up using CSC in the MCI sample
(Cox 1972). These models provide a relative hazard, which
approximates a relative risk, of AD conversion per unit dif-
ference in a CSC. As a control, the AD signature and calcarine
cortical control regions were included as predictors in a sep-
arate model. The timescale used was time from the baseline
study visit. Participants stopped contributing time to the anal-
ysis when they converted, dropped out of the study, or reached
their last study visit without converting. Cumulative probabil-
ities of conversion were plotted using non-parametric Kaplan-
Meier curves for each quartile of cortical thickness for each
CSC (Kaplan and Meier 1958). Additionally, the following
models were estimated: (1) a combined model that included
all cortical signatures and the cortical signature of AD; (2) a
combined model that included all neuropsychological factor

Fig. 1 Graphical representation
of domain-specific cortical sig-
natures of cognition (CSC) and
the cortical signature of AD.
Significant nodes (P<0.005)
from regressions of cortical
thickness and cognitive factor
scores are highlighted on the
pial surface of the FreeSurfer
average brain. To derive the
cortical signature of AD, nodes
with significant cortical thin-
ning observed between individ-
uals with AD and healthy
controls (P<1*10−14) are
shown on the pial surface of the
FreeSurfer average brain. The
more stringent threshold for the
cortical signature of AD was
chosen to create a signature
with approximately the same
size as the CSC
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scores; and (3) CSC and factor score pairs for each cognitive
domain. These analyses were conducted using Stata software,
version 12 (StataCorp 2011).

All models were adjusted for age, sex, and education. For
survival analyses, model fit and the proportional hazards
assumption was evaluated using visual displays including
Kaplan-Meier plots and graphical displays of Schoenfeld
residuals (Hosmer and Lemeshow 1999).

Change in clinical severity Latent growth models were used
to model the trajectory of decline in CDR-SB score through
the third annual follow up visit (Muthén 1997; Muthén and
Curran 1997). Data from the four-year follow up visit were
not included for this set of analyses because data collection
was still underway at the time this study was conducted. In
these models, latent intercept and slope factors represent
initial status and annual linear trajectory of CDR-SB score.
These latent growth factors were regressed on each CSC in
separate models. Coefficients for intercept outcomes repre-
sent differences in the baseline CDR-SB score per standard
deviation difference in cortical thickness of a CSC. Coeffi-
cients for trajectories represent annual paces of change in
CDR-SB score per standard deviation difference in cortical
thickness of a CSC. Similar to survival analyses predicting
conversion, the following models were additionally evalu-
ated: (1) a combined model that included all cortical signa-
tures and the cortical signature of AD; (2) a combined model
that included all neuropsychological factor scores; and (3)
CSC and factor score pairs for each cognitive domain.

All models were adjusted for sex, age, and education.
Model fit for latent growth models was summarized by the
root mean square error of approximation (RMSEA; Steiger
1989) and comparative fit index (CFI; Hu and Bentler
1999). An RMSEA less than 0.05 and CFI above 0.95
indicate excellent model fit (Hu and Bentler 1999). These
analyses were conducted using Mplus statistical software,
version 6.11 (Muthen and Muthen 1998–2010).

Results

Demographics

Descriptive statistics of the sample and neuropsychological
measures are in Table 1. The majority of participants were
white, male, and college-educated, and the median age was
75 years (range 55, 90). Means and standard deviations of
neuropsychological factor scores and component test scores
are provided for healthy control, MCI, and AD participants
included in the present study whose cortical thickness meas-
ures were within 3 standard deviations of their respective
group mean. Participants excluded for having cortical thick-
ness measures that exceeded this threshold (healthy control,

n050; MCI, n090; AD, n046) did not differ from those in the
study on any demographic variables within a diagnostic group
after controlling for multiple comparisons. Participants with
MCI and AD performed significantly worse on all tests com-
pared to healthy controls. The memory factor score revealed
that MCI participants’ performance was on average 1.9 stan-
dard deviations below that of healthy controls and other
neuropsychological factor scores revealed an approximately
1.0 standard deviation difference between healthy control and
MCI participants (Table 1).

Cortical Signatures of Cognition (CSC)

CSC for each cognitive domain were defined as all vertices
on the cortical surface with a significant correlation between
cortical thickness and factor scores (p<0.005) and shown on
the cortical surface from FreeSurfer in Fig. 1. The anatom-
ical location of the peak of each cluster was determined with
the Destriaeux atlas (Destrieux et al. 2010) and listed in
Table S1. Each CSC for the MCI group was standardized
to its corresponding mean and standard deviation in the
healthy control group for use in regressions.

The memory CSC covered 3,176 vertices (Fig. 1; Table
S1). The memory CSC overlapped the most with the cortical
signature of AD (Table S2). The mean thickness of the
memory CSC in cognitively normal participants was
2.85 mm (standard deviation, SD, 0.13 mm). In the MCI
group, the mean memory CSC was 2.70 mm (SD00.19) or
1.11 SD lower than the mean among cognitively normal
participants (Table 1).

The executive function/processing speed CSC covered
7,655 vertices (Fig. 1; Table S1). The executive function/
processing speed CSC overlapped the most with the language
CSC and minimally with the memory CSC, visuospatial CSC,
attention CSC, or the cortical signature of AD (Table S2). The
executive function/processing speed CSC mean thickness in
cognitively normal adults was 2.33 mm (SD00.11 mm). In
the MCI group, the mean executive function/processing speed
CSC was 2.24 mm (SD00.13 mm) or 0.78 SD lower than the
mean among cognitively normal participants (Table 1).

The language CSC covered 6,190 vertices (Fig. 1; Table S1).
The language CSC overlapped most with the executive func-
tion/processing speed CSC andminimally with other signatures
(Table S2). The language CSC mean thickness in cognitively
normal adults was 2.21 mm (SD00.10 mm). In theMCI group,
the mean language CSC was 2.13 mm (SD00.12 mm) or 0.79
SD lower than the mean among cognitively normal participants
(Table 1).

The visuospatial CSC covered 3,439 vertices (Fig. 1;
Table S1). The visuospatial CSC overlapped the most with
the executive function/processing speed and language CSC
and minimally with other signatures (Table S2). The visuo-
spatial CSC mean thickness in cognitively normal adults
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Table 1 Baseline demographic characteristics and cognitive performance: results from ADNI (n0623)

Variable Healthy control
(n0169)

Mild cognitive
impairment (n0307)

Alzheimer's
disease (n0147)

P-value for
group differences

Demographics

Age, Median 75.0 75.0 75.0 0.56

Years of education, Mean (SD) 15.9 (2.8) 15.6 (3.1) 14.6 (3.2) <0.001

Sex, Male, n (%) 81 (47.9) 195 (63.5) 82 (55.8) <0.01

Race, White, n (%) 155 (91.7) 287 (93.5) 139 (94.6) 0.69

Mini-Mental State Exam, Mean (SD) 29.2 (0.9) 27.1 (1.8) 23.6 (1.9) <0.001

CDR sum of boxes, Mean (SD) 0.0 (0.1) 1.6 (0.9) 4.3 (1.6) <0.001

Memory

AVLT Learning (Trial 5—Trial 1), Mean (SD) 5.8 (2.4) 3.4 (2.3) 1.8 (1.8) <0.001

AVLT Long Delay (30 min), Mean (SD) 7.6 (3.6) 2.8 (3.4) 0.8 (1.7) <0.001

AVLT Recognition, Mean (SD) 12.9 (2.6) 9.6 (3.6) 7.3 (4.0) <0.001

AVLT Short Delay, Mean (SD) 8.3 (3.3) 3.9 (3.2) 1.7 (1.8) <0.001

ADAS Delayed Recall, Mean (SD) 2.8 (1.7) 6.1 (2.3) 8.6 (1.6) <0.001

ADAS Recognition, Mean (SD) 2.7 (2.4) 4.7 (2.7) 6.6 (2.8) <0.001

Visuospatial function

Clock Score, Mean (SD) 4.9 (0.4) 4.7 (0.5) 4.4 (0.9) <0.001

Clock Copy Score, Mean (SD) 4.7 (0.6) 4.2 (1.0) 3.5 (1.2) <0.001

ADAS Construction, Mean (SD) 0.4 (0.5) 0.5 (0.6) 0.8 (0.6) <0.001

Language

Verbal Fluency Test-Animal total, Mean (SD) 20.2 (5.3) 16.3 (4.9) 12.7 (4.6) <0.001

Verbal Fluency Test-Vegetables, Mean (SD) 14.9 (4.0) 10.9 (3.5) 8.2 (3.2) <0.001

Boston Naming Test, spontaneous recall, Mean (SD) 27.3 (2.8) 25.4 (3.6) 23.6 (3.9) <0.001

ADAS Naming, Any correct, n (%) 9 (5.3) 74 (24.1) 56 (38.1)

Executive function/processing speed

Trails B-A time, Mean (SD) 47.4 (29.3) 72.1 (45.6) 98.1 (57.7) <0.001

Trails A, Mean (SD) 35.4 (12.3) 41.5 (16.6) 58.8 (29.2) <0.001

ADAS Number Cancellation, Mean (SD) 24.9 (5.1) 22.1 (6.0) 18.0 (6.6) <0.001

Digit Symbol, Mean (SD) 45.9 (9.6) 37.7 (10.9) 28.2 (12.4) <0.001

Attention

Digit Span Forward, Mean (SD) 8.8 (2.0) 8.3 (2.0) 7.5 (1.9) <0.001

Digit Span Backward, Mean (SD) 7.2 (2.0) 6.3 (1.8) 5.3 (1.5) <0.001

Factor scores (standardized in healthy controls)

Memory 0.0 (1.0) −1.1 (1.1) – <0.001

Visuospatial function 0.0 (1.0) −0.4 (0.8) – <0.001

Language 0.0 (1.0) −0.6 (0.8) – <0.001

Executive function/processing speed 0.0 (1.0) −0.5 (0.9) – <0.001

Attention 0.0 (1.0) −0.3 (0.9) – <0.001

Cortical signatures (standardized in healthy controls)

Memory 0.0 (1.0) −1.1 (1.4) – <0.001

Visuospatial function 0.0 (1.0) −0.7 (1.2) – <0.001

Language 0.0 (1.0) −0.8 (1.2) – <0.001

Executive function/processing speed 0.0 (1.0) −0.8 (1.2) – <0.001

Attention 0.0 (1.0) −0.8 (1.3) – <0.001

Control region 0.0 (1.0) −0.3 (1.2) – <0.01

AD pathology 0.0 (1.0) −1.4 (1.5) – <0.001

All neuropsychological domain-specific factor scores and cortical signatures were scaled to have a mean of 0 and standard deviation of 1 in the
healthy control group

CDR clinical dementia rating, M mean, SD standard deviation
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was 2.16 mm (SD00.10 mm). In the MCI group, the mean
visuospatial CSC was 2.09 mm (SD00.12 mm) or 0.66 SD
lower than the mean among cognitively normal participants
(Table 1).

The attention CSC was the smallest, covering 2,503
vertices (Fig. 1; Table S1). The attention CSC overlapped
heavily with the executive function/processing speed, lan-
guage, and visuospatial CSC and minimally with the mem-
ory CSC or the cortical signature of AD (Table S2). Because
of the high degree of overlap in the attention CSC with other
CSC, we do not report analyses with this CSC. The attention
CSC mean thickness in cognitively normal adults was 2.32
(SD00.10 mm). In the MCI group, the mean attention CSC
was 2.24 mm (SD00.13 mm) or 0.75 standard deviations
lower than the mean among cognitively normal participants
(Table 1).

Cortical signature of AD

The cortical signature of AD covered 7,912 vertices (Fig. 1,
Table S1). Although significant portions of the memory
CSC overlapped with the AD signature, most of the cortical
signature of AD did not overlap with the memory CSC
(Table S2). The mean thickness of the cortical signature of
AD in cognitively normal adults was 2.94 mm (SD0
0.12 mm). In the MCI group, the mean was 2.77 mm
(SD00.18 mm) or 1.39 standard deviations lower than the
mean among cognitively normal participants (Table 1). As
with each CSC, the cortical signature of AD in the MCI
group, standardized using the mean and standard deviation
in the cognitively normal group, were used in regressions.

Calcarine sulcus control region

The calcarine sulcus region from Destriaeux atlas (Destrieux
et al. 2010) had 5,851 vertices. The mean thickness in

cognitively normal adults was 1.73 mm (SD00.10 mm).
In the MCI group, the mean was 1.69 mm (SD00.11 mm),
or 0.30 SD lower than the mean among cognitively normal
participants (Table 1).

MCI to AD conversion

Among the 307 MCI participants, 119 converted to AD be-
tween 0.5 years and 4 years after baseline (median follow up:
2 years). Table 2 provides results of survival analyses predict-
ing conversion to AD among MCI participants. After adjust-
ing for age, sex, and education, MCI participants had between
a 45 % and 56 % increased hazard of converting to AD per
one standard deviation decrease in baseline domain-specific
CSC thickness relative to persons with the mean thickness of
cognitively normal adults. Thinning in the language CSC had
the largest hazard for conversion. Figure 2 demonstrates that
MCI participants in the lowest language CSC quartile, with
the thinnest cortices, have a 75 % probability of conversion
after 4 years. During the same period, fewer than 30% ofMCI
participants with the thickest language CSC quartiles con-
verted (Fig. 2, Language panel). Findings were similar for
other CSC, except the control region in which thinning was
only weakly associated with conversion over the study period
(Fig. 2, Table 2).

Analyses combining each CSC with its cognitive fac-
tor score and adjusting for age, sex, and education
revealed that all CSC and factor scores were significant
independent predictors of conversion (Table 3). The com-
bined hazard of conversion for the memory CSC and
memory factor score per 1 SD decrease in both cortical
thickness and factor score was 0.42 (0.79*0.54), suggest-
ing a 2.3-fold increased hazard of conversion when both
the memory CSC and factor score are considered. This
combined hazard is larger than the hazard of conversion
for the AD signature (Table 2). Other domain-specific

Table 2 Independent predictors
of conversion fromMCI to AD in
ADNI MCI participants (n0307)

Results of 10 separate Cox pro-
portional hazards regressions
predicting time to conversion to
AD through up to 48 months
since the baseline visit. All
models are adjusted for sex, age,
and education

AD Alzheimer’s disease

Variable Hazard ratio 95 % Confidence interval

Cortical signatures

Memory 0.66* (0.58, 0.76)

Visuospatial 0.70* (0.59, 0.84)

Language 0.64* (0.54, 0.75)

Executive function/processing speed 0.64* (0.54, 0.75)

Control region 0.81* (0.69, 0.95)

AD pathology region 0.62* (0.54, 0.70)

Neuropsychological factor score

Memory 0.47* (0.37, 0.58)

Visuospatial 0.64* (0.53, 0.77)

Language 0.56* (0.45, 0.70)

Executive function/processing speed 0.58* (0.47, 0.71)
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combinations similarly increased the hazard of conver-
sion by magnitudes between 1.9 and 2.1, all of which
were stronger than the AD signature (Table 2).

In analyses modeling all cortical signatures at once, only
the cortical signature of AD emerged as a significant predictor
of conversion to AD (Table 4). A model of all factor scores at
once revealed that the memory factor score predicted conver-
sion to AD (Table 4). Although other CSC or factor scores
were not significantly associated with conversion, they still

contributed to the overall hazard of conversion, albeit to a
lesser degree.

Change in clinical severity

Results of regressions of levels and trajectories of CDR-SB
on domain-specific CSCs are shown in Table 5. Model fit
statistics suggested excellent fits to the data (all RMSEA
<0.026; all CFI>0.99). Thicker CSC and greater factor

Fig. 2 Cumulative probability
of conversion to AD in ADNI
MCI participants (n0307).
Cumulative probability plots of
conversion time to AD for each
cortical signature of cognition
(CSC), cortical signature of
AD, and a control region

Table 3 Cox proportional haz-
ard survival models of CSC and
factor scores in each domain
predicting conversion from MCI
to AD in ADNI MCI participants
(n0307)

Results of 4 separate Cox pro-
portional hazards regressions
predicting time to conversion to
AD through up to 48 months
since the baseline visit. All
models are adjusted for sex, age,
and education

AD Alzheimer’s disease

Variable Hazard ratio 95 % Confidence interval

Memory

Cortical signature of cognition 0.79 * (0.68, 0.91)

Factor score 0.54 * (0.42, 0.69)

Visuospatial ability

Cortical signature of cognition 0.76 * (0.64, 0.91)

Factor score 0.68 * (0.57, 0.83)

Language

Cortical signature of cognition 0.72 * (0.60, 0.86)

Factor score 0.67 * (0.53, 0.85)

Executive function/processing speed

Cortical signature of cognition 0.72 * (0.60, 0.87)

Factor score 0.68 * (0.55, 0.85)
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scores predicted lower baseline CDR-SB, with the exception
of the control CSC and the visuospatial CSC and factor
score. All CSC and factor scores predicted annual increases
in CDR-SB as cortical thickness declines and cognitive
ability declines, respectively. The memory, language, and
AD cortical regions were the strongest predictors of level
and change in CDR-SB. For example, for the memory CSC,
a 1 SD lower thickness at baseline was associated with a
0.30 unit increase in CDR-SB annually. As expected, the
control region had the weakest relationship among the thick-
ness measures.

Results from regressions of levels and trajectories of
CDR-SB on domain-specific CSC and its accompanying
neuropsychological factor score are summarized in Table 6.
As with previous analyses, thinning in the memory CSC
areas was significantly associated with steeper decline in
CDR-SB after adjusting for the memory neuropsychological
factor score. The same was true of other domain-specific
CSC, but strongest for memory, language, and executive
function/processing speed. Although neuropsychological
factor scores were stronger predictors of level and change
in CDR-SB than corresponding CSC, CSCs were still sig-
nificant independent predictors of change in CDR-SB.

When all CSC and the cortical signature of AD were
combined in a single growth model to predict trajectory of
CDR-SB, greater thickness in every CSC was associated with
less baseline impairment and less worsening in CDR-SB over
time (Table 7). This was also true when all neuropsychological
factor scores were entered into a model together (Table 7).

Discussion

The present study investigated the ability of cortical thick-
ness from CSC, empirically defined by their correlation with
domain-specific cognitive factor scores, to predict clinical

conversion to AD and accelerated worsening of clinical
severity. Cortical thinning in each CSC was associated with
faster progression to AD and with faster rates of decline in
CDR-SB score. The analyses converge on three main find-
ings. First, domain-specific cortical signatures of cognition
can be estimated which are largely independent of the cor-
tical signature of AD. Second, these cortical thickness meas-
urements and cognitive performance account for unique
variance in conversion to AD and accelerated worsening
of clinical severity (Tables 3 and 6). Third, latent factors
representing performance on neuropsychological measures
of memory, executive function, and language and their
corresponding CSC are the best predictors of conversion to
AD and clinically relevant decline in nearly all models.

These results may provide clinicians with the ability to use
the ADNI neuropsychological battery in conjunction with a
structural MRI scan to provide a more accurate estimate of the
risk of conversion to AD. Importantly, in current clinical
practice anMRI, which can be conducted in minutes, is almost
universally performed in dementia evaluations while neuro-
psychological testing, which can take an hour or more, is less
common. As seen in the results, a 1 SD loss in thickness in the
memory CSC and 1 SD decrease in memory function more
than doubles the risk of developing clinical AD. Knowledge of
AD risk is important for both the treatment of patients and for
identifying potential candidates for novel therapeutic
interventions.

The present study utilized a large, well-characterized
sample of participants to empirically define cortical signa-
tures of cognition. Although the focus of this paper was not
about the detailed significance or implications of any par-
ticular region or domain, we briefly discuss the CSC and
cortical signature of AD in relation to previous research. We
leveraged advantages of rigorously constructed factor scores
from a confirmatory factor analysis (Park et al. 2012) to
identify structure-function relationships. This approach is in

Table 4 Cox proportional haz-
ard survival models of CSC and
factor score predictors of con-
version from MCI to AD in
ADNI MCI participants (n0307)

Results of 2 Cox proportional
hazards regressions predicting
time to conversion to AD
through up to 48 months since
the baseline visit. The first
model included all cortical sig-
natures together. The second
model included all neuropsy-
chological factor scores together.
Models are adjusted for sex, age,
and education

AD Alzheimer’s disease

Variable Hazard ratio 95 % Confidence interval

Cortical signatures

Memory 1.22 (0.89, 1.68)

Visuospatial 1.01 (0.72, 1.41)

Language 0.79 (0.52, 1.22)

Executive function/processing speed 0.91 (0.62, 1.32)

Control region 1.02 (0.84, 1.24)

AD pathology region 0.55 * (0.40, 0.76)

Neuropsychological factor score

Memory 0.48 * (0.37, 0.62)

Visuospatial 0.85 (0.62, 1.17)

Language 1.28 (0.86, 1.91)

Executive function/processing speed 0.76 (0.54, 1.06)
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contrast to testing the relationship of the many variables in
the ADNI neuropsychological battery; however, since the
goal was to identify regions associated with domains of
cognition for use in subsequent analysis, we were less
interested in differences within each domain (e.g. encoding
versus retrieval) (Walhovd et al. 2010; Wolk and Dickerson
2011).

We can use results from other imaging studies to confirm
using examples below that the cortical signatures are mea-
suring each domain accurately (e.g., content validity). For
example, the memory CSC is dominated by areas of the
mesial temporal lobe that have been shown to be related to
memory both in function and structure (Buckner 2004;
Buckner et al. 2005; Burggren et al. 2011; Dickerson et al.
2008; Fjell et al. 2008; Johnson et al. 2006). The executive
function/processing speed, language, and visuospatial CSC
all had significant overlap, but also encompassed unique
brain areas. Importantly, our findings emphasize that exec-
utive function is not synonymous with frontal lobe

Table 5 Results from regressions of trajectories of CDR sum of boxes
on domain-specific cortical regions and neuropsychological factor
scores from latent growth models in ADNI MCI participants (n0307)

Variable Estimate 95 % Confidence interval

Cortical signature of cognition

Memory

Intercept −0.13 * (−0.21, −0.05)

Trajectory −0.30 * (−0.37, −0.22)

Visuospatial

Intercept −0.08 (−0.18, 0.01)

Trajectory −0.24 * (−0.35, −0.14)

Language

Intercept −0.13 * (−0.21, −0.04)

Trajectory −0.29 * (−0.39, −0.19)

Executive function/processing speed

Intercept −0.12 * (−0.21, −0.03)

Trajectory −0.29 * (−0.39, −0.19)

Control region

Intercept −0.03 (−0.12, 0.06)

Trajectory −0.12 * (−0.23, −0.02)

AD pathology region

Intercept −0.13 * (−0.20, −0.06)

Trajectory −0.30 * (−0.37, −0.23)

Neuropsychological factor score

Memory

Intercept −0.19 * (−0.29, −0.09)

Trajectory −0.42 * (−0.50, −0.34)

Visuospatial

Intercept −0.08 (−0.18, 0.02)

Trajectory −0.39 * (−0.50, −0.27)

Language

Intercept −0.17 * (−0.29, −0.05)

Trajectory −0.44 * (−0.55, −0.34)

Executive function/processing speed

Intercept −0.20 * (−0.31, −0.10)

Trajectory −0.40 * (−0.51, −0.29)

Results of 10 separate latent growth models of CDR-SB through
36 months. Coefficients for intercept outcomes represent differences in
CDR sum of box units per unit change in cortical thickness, which is on a
z-score metric (mean00, sd01). Coefficients for slope outcomes represent
annual change in CDR sum of box score per unit difference in cortical
thickness measure. Models are adjusted for sex, age, and education

AD Alzheimer’s disease

Table 6 Results from regressions of trajectories of CDR sum of boxes
on domain-specific cortical regions from latent growth models in
ADNI MCI participants (n0307)

Variable Estimate 95 % Confidence interval

Model 1. Memory

Cortical signature of cognition

Intercept −0.08 (−0.17, 0.01)

Trajectory −0.18 * (−0.25, −0.11)

Factor score

Intercept −0.14 * (−0.25, −0.03)

Trajectory −0.31 * (−0.39, −0.23)

Model 2. Visuospatial ability

Cortical signature of cognition

Intercept −0.07 (−0.17, 0.03)

Trajectory −0.15 * (−0.25, −0.06)

Factor score

Intercept −0.05 (−0.15, 0.05)

Trajectory −0.33 * (−0.43, −0.22)

Model 3. Language

Cortical signature of cognition

Intercept −0.09 (−0.18, 0.01)

Trajectory −0.18 * (−0.28, −0.08)

Factor score

Intercept −0.12 (−0.25, 0.01)

Trajectory −0.34 * (−0.45, −0.24)

Model 4. Executive function/processing speed

Cortical signature of cognition

Intercept −0.06 (−0.15, 0.04)

Trajectory −0.18 * (−0.28, −0.09)

Factor score

Intercept −0.17 * (−0.29, −0.06)

Trajectory −0.30 * (−0.41, −0.19)

Results of 5 separate latent growth models of CDR-SB score through
36 months. Coefficients for intercept outcomes represent differences in
CDR sum of box units per unit change in cortical thickness, which is
on a z-score metric (mean00, sd01). Coefficients for slope outcomes
represent annual change in CDR sum of boxes score per unit difference
in cortical thickness measure. Models are adjusted for sex, age, and
education
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functioning and suggests that successful task performance
also relies on non-frontal brain regions responsible for other
fundamental skills. The language CSC corresponds to
regions shown to correlate with the Boston Naming Test
and the Controlled Oral Word Association Test (COWAT),

both measures of language ability (Ahn et al. 2011). The
attention CSC had the fewest vertices, a finding that could
be due to acute demands of the tasks. The cortical signature
of AD we used is consistent with regions that have previ-
ously been shown to be atrophic in AD (Buckner et al. 2005;
Dickerson et al. 2009, 2011; Fjell et al. 2009). At lower
thresholds, most of the brain is atrophic in large AD sam-
ples. We chose a high threshold to constrain the signature to
be the approximate size of each CSC, but note that alterna-
tive thresholds could have been chosen.

Survival plots suggest that there are at least 2 distinct
patterns of cortical atrophy in Alzheimer’s disease (Fig. 2).
Specifically, the middle quartiles of the memory CSC and
AD pathology show similar survival curves. In contrast, the
visuospatial, executive function/processing speed, and lan-
guage CSC revealed that the top two quartiles were similar
and the bottom two quartiles were similar. These groupings
are not surprising given the overlap between CSCs. How-
ever, the finding is also consistent with the notion of multi-
ple etiologies of AD (Buckner 2004). Future studies should
probe covariance patterns in longitudinal change in cortical
thickness to better capture potentially separable processes. It
is likely that a combination of behavioral and structural
change metrics will be ideal for identifying those at highest
risk of conversion to AD and accelerated worsening in
clinical severity.

Our results can be contextualized in a hypothetical model
of biomarker and cognitive change in pathological AD
proposed by Jack and colleagues (Jack et al. 2010). The
Jack model proposes that AD pathology begins with abnor-
mal buildup of amyloid beta, which subsequently results in
irregular processing of tau protein, leading to neurofibrillary
tangles and cellular apoptosis, impaired function in brain
systems, cortical thinning in certain brain regions, and even-
tually cognitive decline and functional disability character-
istic of clinical AD. Although the timing and relative order
of biomarkers that measure these signs and symptoms is an
active area of research, their importance in AD is not dis-
puted. The present results suggest that amount of atrophy
predict rate of functional decline, and thus takes place be-
forehand. This inference is drawn from the finding that, after
controlling for neuropsychological factor scores as indices
of behavior that were used to define the CSC, the CSC still
predicted conversion and significantly increased CDR-SB
trajectories. Additionally, the memory CSC and neuropsy-
chological score together better predicted conversion from
MCI to AD than the cortical signature of AD alone. Al-
though it is not known how amyloid (either measured by
PET or CSF samples) would affect the predictive value of
the CSC in the present study, PET scans and lumbar punc-
tures are not performed as routinely as MRI at this time.
Thus, utilizing a more widely-applied technique to inform
the risk of conversion may be preferable.

Table 7 Results from regressions of trajectories of CDR sum of boxes
on domain-specific cortical regions and neuropsychological factor scores
from two latent growth models in ADNI MCI participants (n0307)

Variable Estimate 95 % Confidence interval

Cortical signature of cognition

Memory

Intercept −0.13 * (−0.21, −0.05)

Trajectory −0.30 * (−0.37, −0.22)

Visuospatial

Intercept −0.08 (−0.18, 0.01)

Trajectory −0.24 * (−0.35, −0.14)

Language

Intercept −0.13 * (−0.21, −0.04)

Trajectory −0.29 * (−0.39, −0.19)

Executive function

Intercept −0.12 * (−0.21, −0.03)

Trajectory −0.29 * (−0.39, −0.19)

Control region

Intercept −0.03 (−0.12, 0.06)

Trajectory −0.12 (−0.23, −0.00)

AD pathology region

Intercept −0.13 * (−0.20, −0.06)

Trajectory −0.30 * (−0.37, −0.23)

Neuropsychological factor score

Memory

Intercept −0.19 * (−0.29, −0.09)

Trajectory −0.42 * (−0.50, −0.34)

Visuospatial

Intercept −0.08 (−0.18, 0.02)

Trajectory −0.39 * (−0.50, −0.27)

Language

Intercept −0.17 * (−0.29, −0.05)

Trajectory −0.44 * (−0.55, −0.34)

Executive function

Intercept −0.20 * (−0.31, −0.10)

Trajectory −0.40 * (−0.51, −0.29)

Results of 2 separate latent growth models of CDR-SB score through
36 months. The first model included all cortical signatures together.
The second model included all neuropsychological factor scores to-
gether. Coefficients for intercept outcomes represent differences in
CDR sum of box units per unit change in cortical thickness, which is
on a z-score metric (mean00, sd01). Coefficients for slope outcomes
represent annual change in CDR sum of box score per unit difference
in cortical thickness measure. Models are adjusted for sex, age, and
education

AD Alzheimer’s disease
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Although the aim of this work was to investigate conver-
sion from MCI to AD, it is also necessary to predict con-
version from cognitively normal to MCI and to AD. At
present, this involves identifying individuals with preclini-
cal AD (Sperling et al. 2011), usually with a PET scan for
amyloid. However, our study suggests that cognitive func-
tion, in combination with cognition-defined signatures of
structural or functional MRI, could provide sensitive meas-
ures to identify individuals with an increased risk of devel-
oping AD that may complement PET imaging. Future
research using CSCs is needed to investigate which CSCs
best predict conversion among healthy controls to MCI and
AD.

This study probed the relationship of behavior and mor-
phometry in predicting conversion to MCI and accelerated
worsening in dementia severity. Importantly, we chose to
define our morphometry metrics from structure-function
relationships based on a validated factor analysis of the
ADNI neuropsychological battery (Park et al. 2012), rather
than pathological differences. In defining morphometry
metrics based on behavior, we were able to target several
aspects of the pathological AD disease process. Although
memory, executive function, and language provided the
dominant effects, thickness in other regions can be used to
compute a cumulative odds ratio across CSCs or factor
scores.

Several caveats merit attention. First, the ADNI sample is
more highly educated than the US population and represents
a self-selected sample of volunteers who present to AD
research centers. Thus, findings should be replicated in other
more educationally and culturally diverse samples. Second,
factor scores for particular cognitive domains are, by design,
a generalization of performance on cognitive tasks designed
to measure very specific aspects of cognitive function. CSC
derived from these scores are a further abstraction, which
may obscure specific forms of neuropsychological impair-
ment that might predict AD early in its course (Wolk and
Dickerson 2011). However, clinical AD defined in ADNI, as
predicted in our survival models, is a disease of global
impairment. A third caveat is that successful performance
in any domain of cognition is not independent of other
cognitive domains, and likely entails contributions from
several neural networks (Wolk and Dickerson 2011). The
present study’s CSCs were based on empirically defined
brain regions correlated with neuropsychological perfor-
mance, not neural networks. Thus, domain-specific CSCs
in this study are also correlated with each other (Table S3),
which has implications for statistical models where all the
CSCs are considered at the same time. Finally, the present
study did not investigate cortical volumes that were empir-
ically associated with cognitive function. Volumetric analy-
ses, whether using Freesurfer volumes or voxel-based
morphometry to identify voxels that are correlated with

neuropsychological factors scores, should be explored in
future studies.

Conclusion

The ability to accurately identify risk for developing clinical
AD while an individual has normal cognition or MCI will
enhance selection of participants for treatment trials and
enable clinicians to decide on optimal management at an
earlier stage. Establishing CSCs is a promising approach
that integrates structural imaging with the gold standard of
clinical disease stage, neuropsychological measures, and
thus enables researchers to track change in multiple modal-
ities over time. The present study indicated that factor scores
and CSCs for memory and language both significantly pre-
dicted risk of conversion to AD and accelerated deteriora-
tion in dementia severity. We conclude that predictive
models are best when they utilize both neuropsychological
measures and imaging biomarkers.
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